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Operator for describing polarization states of a photon in terms
of Riemann-Silberstein quantized electromagnetic vector?
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Abstract. Based on the quantized electromagnetic field described by the Riemann-Silberstein complex vec-
tor F, we construct the eigenvector set of F, which makes up an orthonormal and complete representation.
In terms of F we then introduce a new operator which can describe the relative ratio of the left-handed and
right-handed polarization states of a polarized photon. In F′s eigenvector basis the operator manifestly
exhibits a behaviour which is similar to a phase difference between two orientations of polarization of a
light beam in classical optics.

PACS. 03.65.Ca Formalism – 03.65.Fd Algebraic methods – 03.70.+k Theory of quantized fields

1 Introduction

In recent years, single photon states has attracted much
attention of physicist because they exhibit high powerlaw
falloff of the energy density and of the photon detection
rates [1–3]. The photon states are conveniently described
in terms of the Riemann-Silberstein complex vector of
electromagnetic field [4]. The spatial localization proper-
ties of one photon states and the decay in time has been
analyzed in reference [3]. In the present letter we seek a
new quantum mechanical formalism to determine the na-
ture of the polarization of a single photon, which is based
on the quantized Riemann-Silberstein complex vector.

As for the polarization of single photon states let us
quote the idea of Dirac [5]: “When we make the photon
meet a tourmaline crystal, we are subjecting it to an ob-
servation. We are observing whether it is polarized parallel
or perpendicular to the optic axis. The effect of making
this observation is to force the photon entirely into the
state of parallel or entirely into the state of perpendicular
polarization. It has to make a sudden jump from being
partly in each of these two states to being entirely in one
or other of them. Which of the two states it will jump into
cannot be predicted, but is governed only by probability
laws. If it jumps into the parallel state it gets absorbed and
if it jumps into the perpendicular state it passes through
the crystal and appears on the other side preserving this
? Work supported in part by National Natural Science Foun-
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state of polarization”. In this work we want to introduce
a new operator which can describe the relative ratio of
the two polarizations (left-handed and right-handed) for
a photon polarized obliquely to the optic axis. Moreover,
when we establish a new representation |ξ〉k for the quan-
tized Riemann-Silberstein complex vector of electromag-
netic field, it turns out that in |ξ〉k representation the new
operator can manifestly exhibit a behaviour which is sim-
ilar to a phase difference between two orientations of po-
larization for a beam in classical optics. Recall that for a
beam of classical electromagnetic plane wave the electric
fields Ex = A1 cos(τ + δ1), Ey = A2 cos(τ + δ2) can be
re-written as (eliminating τ between these two equations)(
Ex
A1

)2

+
(
Ey
A2

)2

− 2
Ex
A1

Ey
A2

cos δ = sin2 δ,

δ = δ2 − δ1, (1)

where exp(iδ) is the phase difference as a parameter de-
scribing the polarization [6]. For example, for a right-
handed polarized electric wave, Ey/Ex = eiδ = e−iπ/2.
The work is arranged as follows: in Section 2 we construct
the eigenvector of the quantized Riemann-Silberstein com-
plex field. In Section 3 we introduce the operator for the
description of photon polarization states in terms of the
quantized Riemann-Silberstein complex vector. In Sec-
tion 4 we point out that although our new operator has
nothing to do with optical phase in the usual sense which
was discussed in [7–9] by Dirac, Susskind-Glogower and
Lynch, we compare and contrast the operator with Noh,
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Fougeres and Mandel (NFM) operationally defined phase
operator [10,11] because they resemble to each other in
form.

2 Eigenvector of quantized
Riemann-Silberstein complex vector

As shown in [1], the most general one-photon (1ph) state
can be described by two complex functions of the wave
vector

|1ph〉 =
∫

d3kf+(k)a†(k)|00〉k

+
∫

d3kf−(k)b†(k)|00〉k, (2)

where f± are two components of the photon wave function
in momentum representation which is normalized to one∫

d3k|f+(k)|2 +
∫

d3k|f−(k)|2 = 1 (3)

and a†(k), b†(k) are the creation operators of photons with
the left-handed and right-handed polarization, satisfying

[a(k), a†(k′)] = δ(k− k′) = [b(k), b†(k′)] . (4)

Equations (2–4) coincide with Dirac’s idea [5] that: “It is
supposed that a photon polarized obliquely to the optic
axis may be regarded as being partly in the state of po-
larization perpendicular to the axis. The state of oblique
polarization may be considered as the result of some kind
of superposition process applies to the two states of paral-
lel and perpendicular polarization. This implies a certain
special kind of relationship between the various states of
polarization, a relationship similar to that between po-
larized beams in classical optics, but which is now to be
applied, not to beams, but to the states of polarization of
one particular photon. This relationship allows any state
of polarization to be resolved into, or expressed as a su-
perposition of, any two mutually perpendicular states of
polarization”.

The photon states are conveniently described in terms
of the Riemann-Silberstein complex vector F (RS vector)
composed of electric displacement and the magnetic in-
duction vectors [4],

F(r, t) =
D(r, t)√

2ε0
+ i

B(r, t)√
2µ0

· (5)

The square roots of ε and µ are needed to match the di-
mensions of the two terms and an additional factor of

√
2

is introduced to make the modulus of F equal simply to
the energy density

HCL(r, t) =
D2(r, t)

2ε0
+

B2(r, t)
2µ0

= F†(r, t) · F(r, t) . (6)

After quantizing the electromagnetic field, the RS vector
becomes the field operator F̂(r, 0) (we consider t = 0 case
in Schrödinger picture)

F̂ (r, 0) =
∫

d3k

√
~ck

(2π)3
e(k)F (k, r) (7)

where e(k) is an unit polarization vector, and

F (k, r) = a(k)fk + b†(k)f∗k ,

F †(k, r) = a†(k)f∗k + b(k)fk (8)

here fk = eik·r. We now introduce the eigenvectors of
F (k, r):

|ξ〉k = exp
(
− |ξ|

2

2
+ ξf−1

k a†(k)

+ ξ∗f−1
k b†(k) − a†(k)b†(k)f−2

k

)
|00〉k (9)

where ξ = ξ1 + iξ2 is a complex number and the vacuum
state |00〉k is annihilated by both a(k) and b(k). We prove
here that it is an eigenstate of the operator F (k, r) by
acting a(k) on |ξ〉k

a(k)|ξ〉k =

[
a(k), exp

(
− |ξ|

2

2
+ ξf−1

k a†(k)

+ ξ∗f−1
k b†(k)− a†(k)b†(k)f−2

k

)]
|00〉k

= (ξf−1
k − b†(k)f−2

k )|ξ〉k. (10)

It then follows

F (k, r)|ξ〉k ≡ (a(k)fk + b†(k)f−1
k )|ξ〉k = ξ|ξ〉k. (11)

On the other hand, by acting b(k) on |ξ〉k, we have

b(k)|ξ〉k = (ξ∗f−1
k − a†(k)f−2

k )|ξ〉k (12)

which yields

F †(k, r)|ξ〉k ≡ (b(k)fk + a†(k)f−1
k )|ξ〉k = ξ∗|ξ〉k. (13)

Thus |ξ〉k is the common eigenvector of F and F †, which
agree with the commutator

[F (k, r), F †(k, r)] = 0.

Using the technique of integration within an ordered prod-
uct (IWOP) of operators [12] and

|00〉k.k〈00| =: exp(−a†(k)a(k) − b†(k)b(k)) :

(where : : denotes normal ordering) we can perform the
following integration (in the following for brevity we write
a(k) as a, fk as f and so on)∫

d2ξ

π
|ξ〉k.k〈ξ| =

∫
d2ξ

π
: exp[−|ξ|2 + ξ(f∗a† + fb)

+ ξ∗(fa+ f∗b†)− a†b†f−2 − abf2 − a†a− b†b] := 1.
(14)
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This indicates that |ξ〉k make up a completeness relation.
Further, by examining equations (11–13) we see

k〈ξ′|F (k, r)|ξ〉k = ξ k〈ξ′|ξ〉k = ξ′ k〈ξ′|ξ〉k;

k〈ξ′|F †(k, r)|ξ〉k = ξ∗ k〈ξ′|ξ〉k = ξ′∗ k〈ξ′|ξ〉k,
(15)

thus (ξ′ − ξ) k〈ξ′|ξ〉k = (ξ′∗ − ξ∗) k〈ξ′|ξ〉k = 0 which
indicates the orthonormal property

k〈ξ′|ξ〉k = πδ(ξ′ − ξ)δ(ξ′∗ − ξ∗). (16)

3 Operator for describing photon polarization
states

For describing polarization states of single photon we now
introduce a new operator

eiΘ̂ ≡
√

F

F †
=

√
af + b†f∗

a†f∗ + bf
· (17)

This definition is feasible as [af+b†f∗, a†f∗+bf ] = 0 and
they can reside within the same square root without ambi-
guity. Physically, since a†(k), b†(k) are creation operators
of left-handed and right-handed polarization respectively,
(af + b†f∗)/(a†f∗ + bf) represents the relative ratio of
the two polarizations. This phase-difference between two
polarizations which is similar to eiδ in classical optics (see
Eq. (1)) can be seen more clearly in our |ξ〉k bases. By
using equations (11, 13) we have

eiΘ̂ =

√
F

F †
=
∫

d2ξ

π

√
ξ

ξ∗
|ξ〉k.k〈ξ|

=
∫

d2ξ

π
eiθ|ξ〉k.k〈ξ| (18)

where ξ = |ξ|eiθ. eiθ provides an involved description of
the state of polarization of the field. One can immediately
determine from the value of this ratio the nature of the
polarization. Writing d2ξ = |ξ|d|ξ|dθ, we can express the
expectation value of eiΘ̂ in a normalized state |ψ〉 as

〈ψ|eiΘ̂|ψ〉 =
∫

d2ξ

π
〈ψ|eiθ|ξ〉k k〈ξ|ψ〉

=
∫ 2π

0

dθeiθ

∫ ∞
0

|ξ|d|ξ|
π
|〈ξ|ψ〉|2. (19)

Let P (θ) =
∫∞

0
|ξ|d|ξ|
π |〈ξ|ψ〉|2, we have

〈ψ|eiΘ̂|ψ〉 =
∫ 2π

0

dθeiθP (θ). (20)

According to one of the postulates of the quantum me-
chanics [13]: “When the physical quantity A, to which or-
thonormalized eigenvectors |un〉 associated with the eigen-
value ωn correspond, the expectation value of A in |ψ〉 is
given by 〈ψ|A|ψ〉 = Σn|Cn|2ωn, where |Cn|2 = |〈un|ψ〉|2 is

the probability. “We have reason to name P (θ) in equation
(20) the probability distribution function describing the
degree of circular polarization, since eiθ is the eigenvalue
of eiΘ̂. This shows that |ξ〉k spans a spectral representa-
tion of the operator

√
F/F †. Moreover, by introducing the

number difference between left-handed and right-handed
polarization operator Q = a†a− b†b, we see

[Q,F ] = −F, [Q,F †] = F †. (21)

Note that eiΘ̂ is unitary,we can conclude:

[Q, eiΘ̂] = −eiΘ̂, [Q, e−iΘ̂] = e−iΘ̂. (22)

We can also define the Hermitian operator of the angle as

Θ̂ =
1
π

∫
d2ξ|ξ〉k k〈ξ|θ, (23)

then as a result of equation (21), we have

eiΘ̂Qe−iΘ̂ = Q+ 1 = Q+ [iΘ̂, Q] +
1
2!

[iΘ̂, [iΘ̂,Q]]

+
1
3!

[iΘ̂, [iΘ̂, [iΘ̂,Q]]] + ... (24)

which implies formally [Q, Θ̂] = i.

4 Comparison with NFM operationally
defined phase operator

It is worth comparing and contrasting equation (17) with
the NFM operational phase operator, which is based on
an eight-port homodyne experiment. As measurement al-
ways involve the difference between two phases, and as an
homodyne experiment usually yields the cosine or sine of
phase difference between two quantum states, the state of
the input modes are an arbitrary two-mode state — the
signal state in modes 10 and 1, and a coherent state (a lo-
cal oscillator) — the reference, NFM proposed the cosine
phase operator (in the limit of a strong local oscillator) as
[10,11,14]

C =
X̂√

X̂2+P̂ 2

=
x̂1 + x̂10√

(x̂1 + x̂10)2 + (p̂1 − p̂10)2
(25)

where

x1 =
1√
2

(a + a†), x10 =
1√
2

(b + b†),

p1 =
1√
2i

(a− a†), p10 =
1√
2i

(b− b†).

[a, a†] = [b, b†] = 1. (26)
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Substituting equation (26) into (25) leads to

C =
X̂√

X̂2 + P̂ 2
=

a + a† + b + b†

2
√
aa† + bb† + ab + a†b†

=
1
2

[
a† + b√

(a† + b)(b† + a)
+

a + b†√
(a† + b)(b† + a)

]

=
1
2

√a† + b

a + b†
+

√
a + b†

a† + b


=

1
2

(e−iα + eiα) = cosα, (27)

where eiα =
√

a+b†

a†+b
is comparable in form with the oper-

ator
√

F
F+ =

√
af+b†f∗

a†f∗+bf for polarization states of a pho-
ton. However,it must emphasized that although our oper-
ator F resembles in form to the NFM phase operator (see
Eq. (27)), their physical meaning are completely different,
since a single photon cannot carry phase information.

In summary, we have discussed the intrinsic relation
between the quantized Riemann-Silberstein electromag-
netic complex vector F and the determination of the
nature of the polarization of a single photon. We have con-
structed F’s orthonormal and complete eigenvector set.
Based on this, the new description reflecting the relative
ratio between left-handed and right-handed polarization
states of a photon is established quantum mechanically.
Although our formalism seems to be comparable to NFM
operationally defined phase operator, their physical con-
ceptions are by no means the same, the operator (17) has

absolutely nothing to do with optical phase in the usual
sense, that is as the quantity shifted by a phase-shifter in
a interferometer.
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